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AN INVARIANCE PRINCIPLE IN THE THEORY OF STABILITY -
by

J. P. LaBSalle

Center for Dynamical Systems -
| Brown University -

1. Introduction.

The purpose of this paper is to give a unified presenta-
tion of Liapunov's theory of stability that includes the classical
Liapunov theorems on stability and instability as well as their
more recent extensions. The idea being exploited here had its
beginnings some time ago. It was, however, the use made of this
idea by Yoshizawa in [1] in his study of nonautonomous differential
equations and by Hale in [2] in his study of autonomous functional
differential equations that caused the author to return to this
subject and to adopt the general approach and point of view of this
paper. This produces some new results for dynamical systems defined
by ordinary differential equations which demonstrate the essential
nature of a Liapunov function and which may be useful in applications.
Of greater importance, however, is the possibility, as already in-

dicated by Hale's results for functional differential equations,
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that these ideas can be extended to more general classes of dynam-
ical systems. It is hoped, for instance, thét it may be possible
to do this for some special types of dynamical systems defined by
partial differential equations.

In section 2 we present some basic results for ordinary
differential equations. Theorem 1 is a fundamental stability
theorem for nonautonomous systems and is a modified version of
Yoshizawa's Theorem 6 in [1]. A simple example shows that the
conclusion of this theorem is the best possible. However, when-
ever the limit sets of solutions are known to have an invariance
property then sharper results can be obtained. This "invariance
principle" explains the title of this paper. It had its origin for
autonomous and periodic systems in [3] - [5], although we present
here improved versions of those results. Miller in [6] has estab-
lished an invariance property for almost periodic systems and ob-
tains thereby a similar stability theorem for almost periodic
systems. Since little attention has been paid to theorems which
make possible estimates of regions of attraction (regions of asymp-
totic stability) for nonautonomous systems results of this type are
included. Section 3 is devoted to a brief discussion of some of
Hale's recent results [2] for autonomous functional differential

equations.

2. Ordinary differential equations.

Consider the system




x = f(t,x) 1)

. . . . n+l
where x 1is an n-vector, f is a continuous function on R

to Rn and satisfies any one of the conditions guaranteeing unique-

) . . n .
ness of solutions., For each x 1in R we define |x| =

o) i
(xl + oa.. xi)2 , and for E a closed set in R" we define
2

d(x,E) = Min {|x-y|: y in E}. Since we do not wish to confine our-
selves to bounded solutions, we introduce the point at o and
define d(x,w) = lxl-l . Thus when we write E* = E U{w}, we shall
meen d(x,E*¥) = Min{d(x,E), d(x,»)}. If x(t) is a solution of
(1), we say that x(t) approaches E as t - w if d(x(t),E) -0
as t —» o, If we can find such a set E, we have obtained in-
formation about the asymptotic behavior of x(t) as t — », The
best that we could hope to do is to find the smallest closed set

Q that x(t) approaches as t » o, This set Q 1is called the

positive limit set of x(t) and the points p in £ are called

the positive limit points of x(t). In exactly the same way one

defines x(t) »E as t - -o, negative limit sets, and negative
limit points. This is exactly G. D. Birkhoff's concept of limit
sets. A point p is a positive limit point of x(t) if and only
if there is a sequence of times tn approaching ® as n - o and
such that x(tn) —-p as n s =, In the above it may be that the
maximal interval of definition of x(t) is [O,T) . This causes
no difficulty since in the results to be presented here we need

only with respect to time t replace o by 7. We usually ignore




this possibility and speak as though our solutions are defined on
[0,m) or (-wm,w) .

Let V(t,x) be a ¢ function on [0,®) x R" to R, and
let G be any set in R® . We shall say that V is a Liapunov
function on G for equation (1) if V(t,x) = 0 =and V(t,x) =
-W(x) £ 0for all t >0 and all x in G where W is

s
i1

continuous on R to R and

. n
V=9 4+
at i=1

|

i
We define (G is the closure of G)
E= {x, W) =0, x in G}.
The following result is then a modified but closely re-

lated version of Yoshizawa's Theorem 6 in [1].

THEOREM 1., If V is a Liapunov function on G for equation (1),
then each solution x(t) of (1) that remains in G for all
t > to 2 0 approaches E¥ = EU (o} as 1t — o , provided one of
the following conditions is satisfied:
(i) For each p in G there is a neighborhood N of
p such that |f(t,x)] is bounded for all t >0 and
alil x in N.

(ii) W is ¢t and W is bounded from above or below

along each solution which remains in G for all
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If E dis bounded, then each solution of (1) that remains in G
for t > to = O either approaches E or o as t — o,

Thus this theorem explains precisely the nature of the
information given by a Liapunov function. A Liapunov function
relative to a set G defines a set E which under the conditions
of the theorem contains (locates) all the positive limit sets of
solutions which for positive time remain in G. The problem in
applying the result is to find "good" ILiapunov functions. For
instance, the zero function V= 0 is a Liapunov function for the
whole space R" and condition (ii) is satisfied but gives no in-

n

information since E = R~ ., It is trivial but useful for appli-

cations to note that if V. and V, are Liapunov functions on G,

1 2
then V = Vl + V2 is also a Liapunov function and E = Ellﬁ E2 .
If E 1s smaller than elther E; or E, , then V is a "better"

Liapunov function than either El or E2 and is always at least as

"good" as either of the two.

Condition (i) of Theorem 1 is essentially the one used
by Yoshizawa. We now look at a simple example where condition (ii)
is satisfied and condition (i) is not. The example also shows that
the conclusion of the theorem is the best possible. Consider

se

2 2
R + p(t)X + x = 0 where p(t) 28>0 . Define 2V=x + ¥

2 2 . .
where y =% . Then V= -p(t)y £ -8y and V is a Liapunov

2

~n . o 2
function on R2 . Now W= 08y and W= 25yy = -25(xy + p(t)y") =

-Bxy. Since all solutions are evidently bounded for all t > O,




condition (ii) is satisfied. Here E is the x-axis (y = 0)
and for each solution x(t), y(t) = %(t) >0 as t - o . Noting

t)i 4+ x = 0 has a solution

that the equation x + (2 + e
x(t) = 1+ e’ , we see that this is the best possible result with-
out further restrictions on p .

In order to use Theorem 1 there must be some means of
determining which solutions remain in G . The following coroullary,
which is an obvious consequence of Theorem 1, gives one way of
doing this and also provides for nonautonomous systems a method for

estimating regions of attraction.

Corollary 1. Assume that there exist continuous functions wu(x)

A

and v(x) on R" to R such that u(x) = V(t,x) £ v(x) for all
tz 0, Define Q; = {x ; u(x) <1} and let ¢t be a component
of Q; . Let G denote the component of Qﬂ = {x ;3 v(x) < 1)
containing o . If V is a Liapunov function on G for (1) and
the conditions of Theorem 1 are satisfied, then each solution of
(1) starting in ¢ at any time t 2z 0 remains in G for all
t > to and approaches E¥ as t o , If G 1is bounded and
EE=FEnccag , then E° is an attractor and G is in its
region of attraction.

In general we know that if x(t) dis a solution of
(1)--in fact, if =x(t) dis any continuous function on R to R--

then its positive limit set is closed and connected. If x(t) 1is

bounded, then its positive limit set is compact. There are, how-

S N
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ever, special classes of differential equations where the limit
sets of solutions have an additional invariance property which
makes possible a refinement ot Theorem 1., The first of these are

the autonomous systems

% = £(x) (3)

The limit sets of solutions of (3) are invariant sets. If x(t)
is defined on [0,w) and if p is a positive limit point of x(t),
then the points on the solution through p on its maximal inter-
val of definition are positive limit points of x(t). If x(t) is
bounded for t > 0 , then it is defined on [0,w), its positive
limit set Q is compact, nonempty and solutions through points
p of & are defined on (-w,©0) (i.e., O is invariant). If
the maximal domain of definition of =x(t) for t > 0 is finite,
then x(t) has no finite positive limit points: that is, if the
maximal interval of definition of x(t) for L >0 is [0,B),
then x(t) > as t —»B . As we have said before, we will always
speak as though our solutions are defined on (-w,o) and it should
be remembered that finite escape time is always a possibility unless
there is, as for example in Corollary 2 below, some condition that
rules it out. In Corollary 3 below, the solutions might well go to
infinity in finite time.

The invariance property of the 1imit sets of solutions
of autonomous systems (3) now enables us to refine Theorem 1.

Let V be a Cl function on Rn to R. If G is any arbitrary




set in Rn , we say that V 1is a Liapunov function on G for
equation (3) if V = (grad V)* f does not change sign on G .

Define E= { x ; &(x) =0

$ , x in G}, where G is the
closure of G . Let M be the largest invariant set in E . M
will be a closed set. The fundamental stability theorem for

autonocmous systems is then the following:

THEOREM 2. If V is a Liapunov function on G for (3), then

each solution x(t) of (3) that remains in G for all t >0

(t < 0) approaches M* = MU {w} as t -w (f{ —>.x), If M is

bounded, then either x(t) »M or x(t) Do as t 5w (t - -») .
This one theorem contains all of the usual Liapunov like

theorems on stability and instability of autonomous systems. Here

.

however, there are no conditions of definiteness for V or V ,
and it is often possible to obtain stability information about a
system withh these more general types of Liapunov functions. The
first corollary below is a stability result which for applications
has been quite useful and the second illustrates how one obtains

information on instability. Eetaev's instability theorem is

similarly an immediate consequence of Theorem 2 (see section 3).
COROLLARY 2, Let G be a component of Qﬂ ={x;Vx)<n}.
Assume thal G is bounded, V=0 on G, and M =MNGCG .

Then MO is an attractor and G 1is in its region of attraction.

o
If, in addition, V is constant on the boundary of M~ , then




M° is a stable attractor.
Note that if M° consists of a single point p |,

then p 1s asymptotically stable and G provides an estimate of

its region of asymptotic stability.

COROLLARY 3. Assume that relative to (3) that V V>0 on G
and on the boundary of G that V =0 . Then each solution of
(3) starting in G approaches o as t — o (or possibly in
finite time).

There are also some special classes of nonautonomous
systems where the limit sets of solutions have an invariance

property. The simplest of these are periodic systems (see [3]).
x=f(t,x) , £f(t + T,x) = £(t) for all t and x . (k)

Here in order to avoid introducing the concept of a periodic
approach of a solution of (4) to a set and the concept of a
periodic limit point let us confine ourselves to solutions x(t)
of (4) which are bounded for t >0 . Let { be the positive
limit set of such a solution x(t), and let p be a point in Q .
Then there is a solution of (4) starting at p which remains in
Q for all t in (-»,®) ; that is, if one starts at p at the
proper time the solution remains in Q for all time. This is tne
sense now in which € is an invariant set. Let V(t,x) be Cl

on R x Rn and periodic in t of period T . For an arbitrary

set G of R we say that V is a Liapunov function on G for
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for the periodic system (k) if V does not change sign for all

1

t and all x din G . Define E = { (t,x); V(t,x) =0, x in G )
and let M be the union of all solutions x(t) of (4) with the
property that (t,x(t)) is in E for all t . M could be called

"the largest invariant set relative to E”. One then obtains the

following version of Theorem 2 for periodic systems:

THEOREM 3, If V is a Liapunov function on G for the periodic

system (4), then each solution of (4) that is bounded and remains

in G for all t >0 (t <0) approaches M as t o (t o -n),
In [6] Miller showed that the limit sets of solutions

of almost periodic systems have a similar invariance property and

from this he obtains a result quite like Theorem 3 for almost

periodic systems. This then yields for periodic and almost periodic

systems a whole chain of theorems on stability and instability

quite similar to that for autonomous systems. For example, one has

COROLLARY L. Let Q; = { x; V(t,x) <1, all t in [0,7] } , and
let G* be a component of Q: . Let G be the component of

Qn = { x; V(t,x) < n for some t in [0,T] } containing G . If G
is bounded, V<0 forall % and all x in G , and if M° =
Nrﬁ_67CIG+, then M° is an attractor and G is in its region of
attraction. If V(t,x) = @(t) for all t and all x on the

boundary of M° , then M°  is a stable attractor.

Our last example of an invariance principle for ordinary
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differential equations is that due to Yoshizawa in [1] for "asymp-
totically autonomous" systems. It is a consequence of Theorem 1
and results by Markus and Opial (see [1] for references) on the

limit sets of such systems. A system of the form
% = F(x) + g(t,x) + h(t,x) (5)

is said to be asymptotically autonomous if (i) g(t,x) -0 as

t > o uniformly for x in an arbitrary compact set of R s
(ii) fw |h(t,p(t))| dt < ® tor all ¢ bounded and continuous
on [0,w) Oto R" . The combined results of Markus and Opial then
state that the positive limit sets of solutions of (5) are in-
variant sets of % = F(x) . Using this, Yoshizawa then improved
Theorem 1 for agymptotically autonomous systems.

It turns out to be useful, as we shall illustrate in a
moment on the simplest possible example, in studying systems (1)

which are not necessarily asymptotically autonomous to state the

theorem in the following manners

THEOREM L4, If, in addition to the conditions of Theorem 1, it is
known that a solution x(t) of (1) remains in G for t >0
and is also a solution of an asymptotically autonomous system (5),
then x(t) approaches M¥ = M U {0} as t - o , where M is the
largest invariant set of % =F(x) in E .

It can happen that the system (1) is itself asymptotically

autonomous in which case the above theorem can be applied. However,
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as the following example illustrates, the original system may not
itself be asymptotically autonomous but it still may be possible
to construct for each solution of (1) an asymptotically autonomous
system (5) which it also satisfies.

Consider again the example

=y (®)
= -x - p(t)y , 0<8 =p(t)
for all t > 0

e

e
!
A
B

Now we have the additional assumption that p(t) is bounded from

above. Let (x(t), y(t)) be any solution of (6). As was argued

previously below Theorem 1, all solutions are bounded and y(t) — O
as t oo, Now (X(t), F(t)) satisfies x=y , y =

-x - p(t)y(t), and this system is asymptotically autonomous to

(*) %=y, ¥y= -x . With the same Liapunov function as before,

E is the x-axis and the largest invariant set of (¥) in E is the

origin. Thus for (6) the origin is asymptotically stable in the

large.

3. Autonomous functional differential equation.
Difference differential equations of the form
x(t) = £(t,x(t),x(t-r)) s r>0 (7)

have been studied almost as long as ordinary differential equations

and these as well as other types of systems are of the general form

x(t) = £(t,x (8)

+)
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where x is in R° and x,_ is the function defined on [-r,0]

Nt

0, Thus x is the function that

by Xt(T) = x(t+1), -r £ 7T &

describes the past history of the system on the interval [t-r,t]
and in order to consider it as an element in the space C of
continuous functions all defined on the same interval [-r,0], Xy
is taken to be the function whose graph is the translation of the
graph of x on the interval [t-r,t] to the interval [-r,0] .
Since such equations have had a long history it seems surprising
that it is only within the last 10 years or so that the geometric
theory of ordinary differential equations has been successfully
carried over to functional differential equations. Krasovskii [8]
has demonstrated the effectiveness of a geometric approach in ex-
tending the classical Liapunov theory, including the converse
theorems, to functional differential equations. An account of other
aspects of their theory which have yielded to this geometric approach
can be found in the paper [9] by Hale. What we wish to do here is
to present Hale's extension in [2] of the results of Section 2 of

this paper to autonomous functicnal differential equations

= f(x.) . (9)
It is this extension that has had so far the greatest success in
studying stability properties of the solutions of systems (9), and
it is possible that this may lead to a similar theory for special
classes of systems defined by partial differential equations.

With r =2 0 the space C 1is the space of continuous
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functions ¢ on [-r,0] to R" with foll =
max {l@(r)l; -r £ 7 £ 0}. Convergence in C 1is uniform conver-
n

gence on [-r,0]. A function x defined on [-r,») to R to

said to be a solution of (9) satisfying the initial condition o

at time t = 0 if there is an a > 0 such that x(t) = f(Xt)

for all t in [0,a) end x_= ¢ . Remember x = ¢ means

x(1) = ¢(t), -r = T 0. At t=0, % 1s the right hand deriv-
ative. The existence uniqueness theorems are quite similar to
those for ordinary differential equations, If f 1is locally
Lipschitzian on C, then for each @ 1in C there is one and only
one solution of (9) and the solution depends continuously on ¢ .
The solution can also be extended in C for t >0 as long as it
remains bounded. As in Section 2, we will always speak as though
solutions are defined on [-r,»). The space C 1is now the state
space of (9) and through each point ¢ of C there is the motion
or flow x, starting at ¢ defined by the solution x(t) of (9)

t

satisfying at time t = O the initial condition ©@; x 0 =t <,

t)
is a curve in C which starts at time t =0 at ¢. In analogy

to Section 2 with C replacing Rn, X, replacing x(t), and

”Xt“ replacing |x(t)|, we define the distance d(xt,E) of x

from a closed set E of C to be d(xt,E) = min {“Xt-WH; ¥ € E}.

The positive limit set of x is then defined in a manner completely

t

analogous to Section 2. Because there are some important differences

we shall be satisfied here with restricting ourselves to motions
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X, bounded for t > 0. One of the differences here is that in
C closed and bounded sets are not always compact. Another is that
although we have uniqueness of solutions in the future two motions
starting from different initial conditions can come together in
finite time to > 0; after this they coincide for +t z to . (The
motions define semi-groups and not necessarily groups.)

Hale in [2] has, however, shown that the positive limit
sets O of bounded motions X, are nonempty, compact, connected,
invariant sets in C . Invariance here is in the sense that, if
Xy is a motion starting at a point of Q, then there is an exten-
sion onto (-w,-r] such that x(t) is a solution of (9) for all
t in (-»,®) and x, remains in Q for all t . With this
result he is then able to obtain a result which is similar to
Corollary 1 of Section 2.

For ¢ € C let xt(w) denote the motion defined by (9)
starting at @ . For V a continuous function on C to R define
% and Qz by

Vo) = Tz [V(x (9)-V(0)]. (10)
T - O+

and

Qﬂ={cp;V(<P)<2}-

THEOREM 5. If V is a Liapunov function on G for (9) and X, is

a trajectory of (9) which remains in G and is bounded for t > O,

then Xt M as t 5w,
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Hale has alsc given the following more useful version

of this result.

COROLLARY 5. Define Qn = {p; V(p) < n} and let G Ube Qn or
a component of Qn . Assume that V 1is a Liapunov function on
G for (9) and that either (i) G is bounded or (iii) [@(0)| is
bounded for ¢ in G . Then each trajectory starting in G
approaches M as t - o |

The following is an extension of Cetaev' s instability
theorem. This is a somewhat simplified version of Hale's Theorem 4
in [2], which should have stated "V(p) >0 on U when ¢ # O
and V(0) = O" and at the end "... intersect the boundary of
CY ..."". This is clear from his proof and is necessary since he
wanted to generalize the usual statment of Eetaev‘s theorem to in-

clude the possibility that the equilibrium point be inside U as

well as on its boundary.

COROLIARY 6. Let p € C be an equilibrium point of (9) contained
in the closure of an open set U and let N be a neighborhood of
p . Assume that (i) V is a Liapunov function on G = UN N,

(ii) M NG is either the empty set or p, (iii) V(p) <n on @
when ¢ # p, and (iv) V(p) = n and V(p) = n on that part of
the boundary of G inside N. Then p is unstable, In fact, if
NO is a bounded neighborhood of p properly contained in N then
each trajectory starting at a point of Go =GN No other than p

leaves NO in finite time.
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Proof. By the conditions of the corollary and Theorem 6 each
trajectory starting inside GO at a point other than p must
either leave Go’ approach its boundary or approach p .

Conditions (i) and (iv) imply that it cannot reach or approach that
part of the boundary of Go inside NO nor can it approach p

as t - oo, Now (ii) states that there are no points of M on
that part of the boundary of NO inside G . Hence each such
trajectory must leave No in finite time. Since p is either in
the interior or on the boundary of G, each neighborhood of p
contains such trajectories, and p is therefore unstable.

In [2] it was shown that the equilibrium point ¢ = O of

2(t) = axo(8) + bx (t-1)

was unstable if a >

O

and |b| < |a|]. Using the same Liapunov
function and Theorem 6 we can show a bit more. With

4 o
~ 20 17 ¢O0)as

V(p) = )
Lg -r
I t
V(Xt) . _x®), 7 xb(e)de
a t-r

V(o) = 26°0) + 2 297(0)97 (1) + % (1))
which is nonpositive when lbl < |a] (negative definite with re-
spect to @(0) and @(-r)); that is, V is a Liapunov function
cn C and E = {p; ©(0) = ¢(-r) = 0} . Therefore M is simply

the null function o = 0 . If a > 0, the region G = {p3; V(o) < 0}
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is nonempty, and no trajectory starting in G can have ¢ = 0 as
a positive limit point nor can it leave G . Hence by Theorem 5
each trajectory starting in G must be unbounded. 8Since © = 0
is a boundary point of G, it is unghable., Tt is also easily seen
[2] that if a< 0 and |b| < |a], then ¢ = 0 is asymptotically
stable in the large.

In [2] Hale has also extended this theory for systems
with infinite lag (r = =), and in that same paper gives a number

of significant examples of the applications of this theory.
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